close

Breakthrough Discovery Reverses Paralysis

November 12, 2021

November 12, 2021

Discovery of an important new preventive therapy that reverses paralysis in mice after severe spinal cord injury was reported today in the top academic journal, “Science.”

Researchers at Northwestern University in Chicago, led by Dr. Samuel I. Stupp, used super-molecular chemistry to create an injection of nanofibers that “mimic the architecture of filaments that naturally exist in the spinal cord.” Four weeks after injection, the once-paralyzed mice had regained their ability to walk.
 
Here are the details from Northwestern University:


Northwestern University researchers have developed a new injectable therapy that harnesses “dancing molecules” to reverse paralysis and repair tissue after severe spinal cord injuries.

In a new study, researchers administered a single injection to tissues surrounding the spinal cords of paralyzed mice. Just four weeks later, the animals regained the ability to walk.

By sending bioactive signals to trigger cells to repair and regenerate, the breakthrough therapy dramatically improved severely injured spinal cords in five key ways: (1) The severed extensions of neurons, called axons, regenerated; (2) scar tissue, which can create a physical barrier to regeneration and repair, significantly diminished; (3) myelin, the insulating layer of axons that is important in transmitting electrical signals efficiently, reformed around cells; (4) functional blood vessels formed to deliver nutrients to cells at the injury site; and (5) more motor neurons survived.

After the therapy performs its function, the materials biodegrade into nutrients for the cells within 12 weeks and then completely disappear from the body without noticeable side effects. This is the first study in which researchers controlled the collective motion of molecules through changes in chemical structure to increase a therapeutic’s efficacy.

Dr. Samuel Stupp“Our research aims to find a therapy that can prevent individuals from becoming paralyzed after major trauma or disease,” said Northwestern’s Samuel I. Stupp, who led the study. “For decades, this has remained a major challenge for scientists because our body’s central nervous system, which includes the brain and spinal cord, does not have any significant capacity to repair itself after injury or after the onset of a degenerative disease. We are going straight to the FDA to start the process of getting this new therapy approved for use in human patients, who currently have very few treatment options.”

Stupp is Board of Trustees Professor of Materials Science and Engineering, Chemistry, Medicine and Biomedical Engineering at Northwestern, where he is founding director of the Simpson Querrey Institute for BioNanotechnology (SQI) and its affiliated research center, the Center for Regenerative Nanomedicine. He has appointments in the McCormick School of EngineeringWeinberg College of Arts and Sciences and Feinberg School of Medicine.

Life expectancy has not improved since the 1980s

According to the National Spinal Cord Injury Statistical Center, nearly 300,000 people are currently living with a spinal cord injury in the United States. Life for these patients can be extraordinarily difficult. Less than 3% of people with complete injury ever recover basic physical functions. And approximately 30% are re-hospitalized at least once during any given year after the initial injury, costing millions of dollars in average lifetime health care costs per patient. Life expectancy for people with spinal cord injuries is significantly lower than people without spinal cord injuries and has not improved since the 1980s.

“Currently, there are no therapeutics that trigger spinal cord regeneration,” said Stupp, an expert in regenerative medicine. “I wanted to make a difference on the outcomes of spinal cord injury and to tackle this problem, given the tremendous impact it could have on the lives of patients. Also, new science to address spinal cord injury could have impact on strategies for neurodegenerative diseases and stroke.” 

‘Dancing molecules’ hit moving targets

The secret behind Stupp’s new breakthrough therapeutic is tuning the motion of molecules, so they can find and properly engage constantly moving cellular receptors. Injected as a liquid, the therapy immediately gels into a complex network of nanofibers that mimic the extracellular matrix of the spinal cord. By matching the matrix’s structure, mimicking the motion of biological molecules and incorporating signals for receptors, the synthetic materials are able to communicate with cells.

“Receptors in neurons and other cells constantly move around,” Stupp said. “The key innovation in our research, which has never been done before, is to control the collective motion of more than 100,000 molecules within our nanofibers. By making the molecules move, ‘dance’ or even leap temporarily out of these structures, known as supramolecular polymers, they are able to connect more effectively with receptors.”

Stupp and his team found that fine-tuning the molecules’ motion within the nanofiber network to make them more agile resulted in greater therapeutic efficacy in paralyzed mice. They also confirmed that formulations of their therapy with enhanced molecular motion performed better during in vitro tests with human cells, indicating increased bioactivity and cellular signaling.

“Given that cells themselves and their receptors are in constant motion, you can imagine that molecules moving more rapidly would encounter these receptors more often,” Stupp said. “If the molecules are sluggish and not as ‘social,’ they may never come into contact with the cells.” 

One injection, two signals

Once connected to the receptors, the moving molecules trigger two cascading signals, both of which are critical to spinal cord repair. One signal prompts the long tails of neurons in the spinal cord, called axons, to regenerate. Similar to electrical cables, axons send signals between the brain and the rest of the body. Severing or damaging axons can result in the loss of feeling in the body or even paralysis. Repairing axons, on the other hand, increases communication between the body and brain.

The second signal helps neurons survive after injury because it causes other cell types to proliferate, promoting the regrowth of lost blood vessels that feed neurons and critical cells for tissue repair. The therapy also induces myelin to rebuild around axons and reduces glial scarring, which acts as a physical barrier that prevents the spinal cord from healing. 

“The signals used in the study mimic the natural proteins that are needed to induce the desired biological responses. However, proteins have extremely short half-lives and are expensive to produce,” said Zaida Álvarez, the study’s first author and former research assistant professor in Stupp’s laboratory. “Our synthetic signals are short, modified peptides that — when bonded together by the thousands — will survive for weeks to deliver bioactivity. The end result is a therapy that is less expensive to produce and lasts much longer.” 

Universal application

While the new therapy could be used to prevent paralysis after major trauma (automobile accidents, falls, sports accidents and gunshot wounds) as well as from diseases, Stupp believes the underlying discovery — that “supramolecular motion” is a key factor in bioactivity — can be applied to other therapies and targets.

“The central nervous system tissues we have successfully regenerated in the injured spinal cord are similar to those in the brain affected by stroke and neurodegenerative diseases, such as ALS, Parkinson’s disease and Alzheimer’s disease,” Stupp said. “Beyond that, our fundamental discovery about controlling the motion of molecular assemblies to enhance cell signaling could be applied universally across biomedical targets.” 

Other Northwestern study authors include Evangelos Kiskinis, assistant professor of neurology and neuroscience in Feinberg; research technician Feng Chen; postdoctoral researchers Ivan Sasselli, Alberto Ortega and Zois Syrgiannis; and graduate students Alexandra Kolberg-Edelbrock, Ruomeng Qiu and Stacey Chin. Peter Mirau of the Air Force Research Laboratories and Steven Weigand of Argonne National Laboratory also are co-authors.

The study, “Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury,” was supported by the Louis A. Simpson and Kimberly K. Querrey Center for Regenerative Nanomedicine at the Simpson Querrey Institute for BioNanotechnology, the Air Force Research Laboratory (award number FA8650-15-2-5518), National Institute of Neurological Disorders and Stroke and the National Institute on Aging (award numbers R01NS104219, R21NS107761 and R21NS107761-01A1), the Les Turner ALS Foundation, the New York Stem Cell Foundation, the Paralyzed Veterans of America Research Foundation (award number PVA17RF0008), the National Science Foundation and the French Muscular Dystrophy Association.

6 responses to “Breakthrough Discovery Reverses Paralysis”

  1. John S says:

    Hello, I received your email newsletter with this article. Frankly, I am tired of getting stories and information like this. I think that it is somewhat misleading for your average SCI consumer. Having been injured for almost a quarter century, I have seen SO MANY of these “rats did this” or “mice did this” stories or research findings. Going from a rat/mouse model to human testing and human application is still fairly monumental. So, when you see a headline like, “Breakthrough Study Reverses Paralysis”, it grabs you. For a brief moment, you think, “Wow. they made a breakthrough and have reversed paralysis. This is incredible. I need to get this treatment.” Then, you find that it was a mouse.

    At this point, I think that I will be paralyzed for the duration of my life. I’m not happy about it but it is ok at this point. I do believe that someday, they will fine a “cure” or group of medicines, procedures, therapies, etc. that will allow people with SCI to regain function and regain much, if not all, of the abilities that they have lost. Sadly, that day is not today and it is not this therapy (for now).

    This basic science needs to be done and this is terrific. But, when it is framed the way it is and little context is given, I feel that it does more harm than good.

    Respectfully,
    24 years with SCI

  2. Pamela Koland says:

    Thank you, thank you, thank you. My granddaughter suffered a spinal cord injury when she was 5. Just a few years ago. This is like a miracle we’ve been praying for!! ❤️❤️❤️

  3. John S says:

    Sadly, my point has just been illustrated.

  4. Cameron Absher says:

    I would like to try this out ..

  5. Bon says:

    This is the only kind of treatment that I would likely consider. By that I mean I’ve always said that if they could just inject something I would be more willing to try it. I wouldn’t risk going under the knife and ending up on a ventilator but this sort of treatment seems safer. I won’t have anything to do with harvesting stem cells from aborted unborn babies. If this is wholly synthetic, great! But if it involves baby parts, I’m out. As a far as the guy whining it’s just a mouse…well they gotta start on mice not people. What I like about this therapy is that they said they are going straight to the FDA to get it approved for trial in humans.

  6. Kevin says:

    When you have a break through with a human please post a video then… as noted a paralyzed mouse moving its legs is much different than a human and waiting for fda approval for years is a major waiting game. Seriously post “actual” news when the time is right… no sense creating false hope.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

close